Cardiac Glycoside Activities Link Na+/K+ ATPase Ion-Transport to Breast Cancer Cell Migration via Correlative SAR

نویسندگان

  • Anniefer N. Magpusao
  • George Omolloh
  • Joshua Johnson
  • José Gascón
  • Mark W. Peczuh
  • Gabriel Fenteany
چکیده

The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of cell migration by ouabain in the A549 human lung cancer cell line

The Na+/K+-ATPase α subunit is highly expressed in malignant cells. Ouabain, a cardioactive glycoside, binds to the Na+/K+-ATPase α subunit and inhibits the activity of Na+/K+-ATPase. In the present study, the effect of ouabain on the migration of A549 cells was analyzed using the wound healing and transwell chamber migration assays. The impact of ouabain on the expression of E-cadherin, N-cadh...

متن کامل

Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma

Epidermal growth factor (EGF) signaling regulates cell growth, proliferation, and differentiation. Upon receptor binding, EGF triggers cascades of downstream signaling, including the MAPK and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways. Aberrant expression/activation of EGFR is found in multiple human cancers, including medulloblastoma, the most prevalent pediatric brain cancer, and...

متن کامل

The role of cardiac glycosides in influencing breast cancer cell proliferation

Introduction Cardiac Glycosides (CGs) are commonly used to treat congestive heart failure. CGs inhibit the Sodium Potassium ATPase (Na+/K+ ATPase) pump. Interestingly, CGs have been suggested to inhibit proliferation and migration of breast cancer cells. A pool of non-pumping Na+/K+ ATPase reportedly localizes in specific membrane organelles, caveolae, by interacting with the structural protein...

متن کامل

The cardiac glycoside binding site on the Na,K-ATPase alpha2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle.

The physiological significance of the cardiac glycoside-binding site on the Na,K-ATPase remains incompletely understood. This study used a gene-targeted mouse (alpha2(R/R)) which expresses a ouabain-insensitive alpha2 isoform of the Na,K-ATPase to investigate whether the cardiac glycoside-binding site plays any physiological role in active Na(+)/K(+) transport in skeletal muscles or in exercise...

متن کامل

Ion dependence of Na-K-ATPase-mediated epithelial cell adhesion and migration.

THE ROLE OF Na-K-ATPase in the regulation of epithelial cell polarity, adhesion, and migration has been demonstrated. Some of these processes, such as tight junction (TJ) formation, require ion transport function of Na-K-ATPase by its catalytic subunit Na-K. Other functions, such as motility suppression, cell adhesion, and contact inhibition, are mediated by the regulatory subunit Na-K, typical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015